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Coherent structures in fluid boundary layers at high Reynolds numbers are a prominent feature of
these flows. The structures appear as concentrations of vorticity into “hairpin” and other shapes. We
explore the inviscid interaction and stability of vortex filaments initially situated spanwise to the mean
flow in a model of a boundary layer. Both for a single vortex filament and its image through the bound-
ary and for an infinite line of such filaments with their images we find a linear instability associated with
deformations of the filament along its length with maximum instability having a wavelength on the order
of the height of the filament above the boundary. The linear unstable manifold for this instability points
at approximately 45° from the plane of the boundary in accord with experimental observations and nu-
merical modeling of these coherent structures. This provides a dynamical origin to the observations of

the orientation of these coherent structures.

PACS number(s): 47.32.Cc, 47.20.Cq, 47.27.Nz

I. INTRODUCTION

Coherent structures in boundary layer flows at high
Reynolds number provide an attractive set of collective
degrees of freedom with which one can anticipate
describing the fluid dynamics on larger spatial scales
[1,2]. An idealized model of the coherent structures is to
consider them spanwise concentrations of vorticity which
are generated near the wall in regions of the highest
shear. The vortex filaments then distort and move ac-
cording to their interaction with each other and with the
background mean flow.

We have analyzed a simple model for the dynamics of
these vortex filaments assuming they interact among
themselves while moving in an inviscid background. To
represent a boundary layer within this context we have
studied both a single vortex filament and its image
through the boundary and an infinite sequence of vortex
filaments along the direction of the boundary and their
images through the boundary. The two dimensional ver-
sion of these arrangements is described by Lamb [3], and
the consideration of three dimensional disturbances was
carried out by Robinson and Saffman [4]. We have pro-
ceeded using a Hamiltonian formulation of the problem
[5].

The key feature of this model of interacting vortex fila-
ments, apparently unnoticed by Robinson and Saffman or
Lamb before them, is that the direction of the unstable
manifold for the vortex filaments lies approximately at a
45° tilt with respect to the streamwise direction and from

1063-651X/94/50(2)/1206(13)/$06.00 50

the normal direction to the boundary. This angle is not
precisely 7 /4 but is dynamically determined by the form
of the instability and the angle we mention is for the most
unstable modes. The angle for other modes varies in the
vicinity of the angle for the maximum instability.

The precise value of the angle depends very weakly on
the way in which the idealized, infinitely thin vortex fila-
ment is cut off to avoid its logarithmic self singularity [6].
In the case of a single filament and its image, as the cutoff
we use varies over five orders of magnitude, the angle
varies about 1° near a nominal mean of 43°.

There is clear experimental evidence for the impor-
tance of this approximate value for the tilt angle of vor-
tices emergent in the turbulent boundary layer [7]. There
is also striking numerical evidence from extensive large
scale eddy simulations of the turbulent boundary layer
that the direction of vorticity concentration is peaked
near 45° [8]. The explanation for this given by Theodor-
sen [9] and discussed in detail by Head and Bandyo-
padhyay [7] is that the equation for the rate of change of
the length of the vorticity vector has a term, the vortex
stretching term, which depends on sin(268), where 6 is the
angle in the plane normal to the direction of the filament.
This term peaks at 45°, of course. As Head and Bandyo-
padhyay [7] then point out, there is no reason provided
why the direction of maximum turbulence production, in
the sense of vortex stretching and intensification, should
be chosen by the system of vortex filaments as the pri-
mary direction of extension. In our calculation we
demonstrate that the direction of the most unstable
modes is §=~43°, and this provides the dynamical argu-
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ment required to explain the observations.

There is an arbitrary distance introduced in this prob-
lem, namely the distance above the boundary (the x-z
plane) at which the vortex filaments lie at the initial time.
Since we do not have a model for the production of the
filaments, we cannot hope to have an a priori reason for
the choice of this distance. However, calling this dis-
tance & /2, we have determined that the instability arising
from spanwise perturbations of the filament with wave
number k, with hk,~0.5 yields the maximum growth
rate for the instability. From this an order of magnitude
value of 4 /2 can be determined in the following way. As
observed in experiments [7], the wavelength A, =27 /k,
associated with the spanwise separation of observed
streamwise vorticity streaks is about A,~100 in wall
units, suggesting that the initial location of the vortex
filament is about 4 =A, /(47)=~5-10 in wall units. From
the observations of Head and Bandyopadhyay [7] (as in
their Figs. 28 and 30) we can see that this is the region of
maximum shear du(y)/dy in their experiments. This is
quite a natural place for the vortex filament to originate
and gives further support to the physical picture in which
vortex filaments are created near the wall in the region of
maximum shear, and then through their own interaction
and through the interaction with the mean flow they
create the coherent structures [1,2] seen so clearly in ob-
servation. We are certainly not the first to suggest this
picture [10,11,12], but we see substantial additional sup-
port for this view arising through the calculations we
present in this paper.

It is natural to ask why a property of the linear insta-
bility of the vortex filament, namely the nearly 45° in-
clination of its unstable manifold, would have much to do
with the observations. Our hypothesis, which we are now
investigating by numerical simulations of the nonlinear
regime, is that as the undulations of the filament move
away from the wall from the very small value of » =~5-10
wall units where they are produced, the force on them
from the image vortex, that is the effect of the wall, rap-
idly decreases, and they move very much as an isolated
vortex filament through as inviscid fluid. Once launched
at ~45°, they will continue in that direction interacting
with themselves through induction among their own
parts but all the while moving through the fluid at ap-
proximately the launch angle. Their own self interactions
will distort the spanwise wave structures producing
secondary instabilities which are seen in numerical simu-
lations of the filament motion [11,13] as well as in experi-
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ments [7,10].

We shall consider first the case of a single filament and
next an infinite array of filaments. In the latter case,
when the filaments are even moderately well separated
compared to their distance to the wall, the results are
nearly identical to the single filament case.

II. SINGLE FILAMENT AND ITS IMAGE

A. General formulation

A vortex filament is a concentration of vorticity o(x,?)
along a line R(s,?) with s some labeling of the filament.
We will consider a vortex filament which is located in the
half space y >0 with a rigid boundary in the plane y =0
(see Fig. 1). Furthermore our filament will differ by a
small amount from a perfectly straight filament aligned
along the z axis. It is natural to label the filament by the
coordinate z and specify the x and y locations of the fila-
ment by their z value at every time. This parameteriza-
tion works locally all along the filament, and since we will
be considering only small perturbations to filament along
the z axis in this paper, it will be a quite adequate form
for us. This means we write

R(z,t)=(x(z,t),y(z,t),z) . (1)

Since an initially straight filament will simply translate
along the x direction with a constant velocity, it will be
convenient to modify this form for R(z,?) slightly later
on.

The vorticity field arising from a filament at R(z,t)
around which the total circulation is I'" reads

dR(z,t)
az
The Hamiltonian for the interaction of vortices is just
the kinetic energy of the fluid motion which results from

the presence of the filament. The velocity u(x,z) due to
the filament at R(z,¢) is

u(x,2)=VXW¥(x,t)+Vd(x,t), (3)

o(x,t)=T [ * dz 8 (x—R(z,1)) )

where
R(z,t) 1
3z |x—Rl(z,t)]

is the vector potential due to a vortex filament in free
space. In the presence of rigid boundaries, the term V@

_T (=3
¥(x,1)=— [~ dz @

FIG. 1. A vortex filament of
circulation I aligned along the z
axis at a height y=h /2 above
the x-z plane. Its image at
y=—h/2 has circulation —T.
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must be added so that the condition of vanishing normal
velocity on the rigid surfaces can be satisfied. Incompres-
sibility of the fluid means that

V=0, (5)
while the boundary condition requires
n-Vo=—n-VXV¥, (6)

where n is the unit normal to the boundary. This deter-
mines .

In the problem of interest, the rigid boundary at y =0
is so simple that we may find an appropriate vector po-
tential by the method of images. The free slip boundary
condition at y =0 may be satisfied by an image filament
with equal and opposite circulation located at

R,(z,t)=(x(z,t),—y(z,t),z) . (7)

The resultant total velocity field of the fluid, located at
y >0 is simply given by

u(x,t)=VXW¥(x,t), (8)

with W now the vector potential due to the filament and
its image:

_L © aR(Z,t) 1
W(x,1)="~ f_wdz 3z |x—Rlz,t)|
dR,(z,t)
. r ,9R: 1 . 9)
ol B 3z  |x—R,(z,1)|

As noted above, the appropriate Hamiltonian for this
problem is just the kinetic energy, given by

H=1[d u(x,1)-u(x,1)
=1 [d*x o(x,1)W(x,1), (10)

where an integration by parts is performed. A boundary
term arising from the integration by parts vanishes. In

|
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the Hamiltonian above, Eq. (10), we use the vorticity
given in Eq. (2) and the vector potential in Eq. (9).

Since we wish to investigate the stability of the steady
state that consists of a perfectly straight filament uni-
formly translating along the x direction, it is convenient
to slightly modify the coordinates x(z,¢) and y(z,t), by
writing

R(z,t)= |Ut+x(z,t) ,%-’-y(z,t) Z |, (11

where U is a constant translation velocity induced by the
interaction between the filament and its image located at

R,(z,t)= |Ut+x(z,t) ,—_2i—y(z,t) .z (12)

h /2 is the distance of the unperturbed filament from the
wall. For a vortex filament of circulation I'y U=T /27h
[3]. The steady motion is given by R(z,t)=(Ut,h /2,z)
and R;(z,t)=(Ut,—h /2,z);x(z,t) and y(z,t) will be the
small quantities in our expansion.

Because we have shifted to a moving frame, expressed
by the explicit time dependence which now appears in
R(z,t), a term must be added to the Hamiltonian which
generates this shift. The modified Hamiltonian will now
be

H=1[d’ o(x,1)-¥(x,t)—UP, , (13)

where P, is the linear momentum of the fluid [5] in the x
direction, given by
P.=T [dzy(z). (14)

With all this we may explicitly write the Hamiltonian in
terms of the (x(z,¢),y(z,t)) variables,

[x'(z,t)x'(z',t)+y'(z,t)y'(z',t)+1]

=—fw dz dz'

8 —

[x'(z,t)x'(z',t)—yp'(z,t)y'(z',t)+1]

[(x(z,8)—x(z', )2+ (p(z,t)—y(z’, 1))+ (z—2") 2 +pu?]'?

[(x(z,0)—x(z', )2+ (h+y(z,t)+y(z',t))P+(z—2")*]"?

where the prime on x(z,t) and y(z,t) means derivative
with respect to the z or z’ label. To remove the logarith-
mic singularity which arises from the interaction of a vor-
tex filament with itself, we use the simple expedient of
adding a term u? in the distance appearing in the denomi-
nator of the Hamiltonian [6]. The cutoff u enters only in
the first term, which is the self interaction of the filament
and the self interaction of the image filament. A cutoff is
not required in the second term, which represents the in-
teraction of the filament with its image, that is, with the
wall.

Clearly one can employ more realistic cutoff methods

—UT [dzy(z,1), (15)

f

which reflect substantial physics about the structure of
the filament “core,” but since we will focus on instabili-
ties which satisfy k,u << 1, the precise value of this cutoff
and the precise form of this cutoff are not of physical in-
terest. Fortunately, the properties of the instability of in-
terest near k,h ~0.5 are weakly dependent on pu over
many orders of magnitude of its value, so we can hence-
forth set aside the detailed nature of the cutoff.

The Hamiltonian (15) gives rise to equations of motion
for the dynamical variables x(z,¢) and y(z,¢), which hap-
pen to be canonical with this method of labeling the fila-
ment. The Poisson bracket among the x(z,?) and the
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y(z,t) are simply
[x(z, (2,0} =18z —2") (16)

The equations of motion resulting from these brackets are
ox(z',t) _ 1 8H[x(z,t),y(z,t)]

ot r Sy(z',t) ’ a7
ay(z,e) _ 1 S8H[x(z,t),y(z,t)]
at r ox(z',t) ’

where functional derivatives are used.

B. Small perturbations

We want to establish the form of the Hamiltonian
which arises when the deviations x(z,?) and y(z,t) are

|
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“small.” Two notions of small are used: (i) small with
respect to the only length in the problem, namely 4, and
(ii) small in the sense that the z wave number k, associat-
ed with the perturbation never becomes much larger than
the order of 1/h. If this occurs and, in particular, if K,
is large, the dynamics of the core of the vortex filament
becomes important. This does not concern us here as we
are focusing on large scale motions and interactions of
these filaments. Treatment of the core in detail and of
the dynamics of the core when filaments come close is
beyond this consideration of the stability of the setting we
have established. In all cases we will consider u/h <<1
and seek quantities which are insensitive to the precise
value of u over a large range.

When we expand the Hamiltonian in this way, we ar-
rive at the linear and quadratic terms

(x'(z,0)x"(z',t))+y'(z,0)p"(2',t) 1 (x(z,8)—x(2',¢))*+(y(z,t)—p(z',1))

2 0
H[x(z,t),y(z,t)]=§—ﬂf_ dzdz" "

2 173

_ x'(z,t)x’(z',t)—y'(z,t)y'(z',2)

L1 (x(z,1)—x(2,8))2+(p(z,t)+p(z',1))* 3 4h’(y(z,t)+y(z',1))?

2
r ©
+ Py U l"f_wdzy(z,t),
where
»?=(z—z'+u?, (19)
and
E=(z—z')*+h?. (20)

A formally infinite constant has been dropped from this
expression.

The only linear term in the canonical variables appear-
ing in the expansion of the Hamiltonian is the last one
with coefficient I' /2wh — U. For a steady state one must
put U=T/27h in agreement with our previous observa-
tions. To work with this Hamiltonian, we now Fourier
transform the variables x(z,¢) and y(z,¢) in the z direc-
tion using

__l_ © ikzz
x(z,0)= -~ f_mdkzX(kz,t)e @

and
_ 1 © ikzz
y(z,t)——z—T-r—f_wdkz Y(k,,t)e" = . 22)

The Hamiltonian is now diagonalized in wave-number
space and reads

§3 8 §5

(18)

H[X(k,,t) ,Y(k,,t)]
2 rw
=—— [ 7 dk,{ A(k,)|X(k,,t)|?
Sﬂlf_w (Ak)IX (k1)

+B(k,)|Y(k,,t)?}, (23)

with
) 1—khK |(kh)
A(k)=k [Ko(k,u)—KO(kh)]-i-—;z——
1—kukK,(k
_ LRk 24)
u

and
B(k)=k[Ky(ku)+Ky(kh)]
N khK (kh)—(kh VK, (kh)—=1  1—k,K,(kp)
h? 'u2 :

(25)

The functions K, (w) are Bessel functions of the third
kind.
The equations of motion are

oX(k,,t) r

S = B )Y (k1) (26)

and
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oY(k,,t) r

S = AUX (K1) 27)
This means that
FXlkt) _ 12 A(k,)B(k,)X(k,,1) , 28)
ar? 16m 2t (

so the motion at any wave number k, is unstable when
the product 4(k,)B(k,) is negative.

In Fig. 2 we display the value of the growth rate
I'/4w[— A(k,)B(k,)]'/? as a function of the cutoff pa-
rameter pu, expressed as log,o(x/h), and the dimension-
less spanwise wave number k,/h. Over more than five
orders of magnitude in the ratio u/h, the growth rate
varies about a factor of 2. In the neighborhood of
©/h =0.001, where we will perform our subsequent cal-
culations, we see that the maximum growth rate is found
near k,h =~0.5. This is easier to see in the projected con-
tour plot of the same information in Fig. 3.

In Fig. 4 we show the growth rate o(k,4 ) as a function
of the dimensionless wave number for the domain of in-
stability o(k,h)>0. This curve is computed with
©/h=0.001. To see the sensitivity of the angle of the in-
stability, namely the eigendirection associated with
growth, we plot in Fig. 5 the angle 0y, x at the k,h of
maximum growth rate as a function of u/h over a large
range of values. Again we see the rather insensitive
dependence of this angle of maximum growth on the
cutoff parameter.
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FIG. 2. Growth rate for a single vortex filament and its im-
age initially located at +h /2 above and below the x-z plane.
The growth rate is displayed as a function of the z (spanwise)
wave number k,h and the cutoff size u/h, which regularizes the
logarithmic infinity of the self interaction of an infinitely thin
filament. The dependence on u/h is very weak. Only positive
or zero growth rates, namely unstable or marginal modes, are
shown.

Next we examine in Fig. 6 the actual angle associated
with the linear instability as a function of k,h over the
range of unstable wave numbers. To have some sense of
the relative importance of these angles as might be seen
in an arbitrary initial perturbation of the filament, which
would possess all wave numbers with some distribution
and would have no reason to be concentrated at the wave
-37 -33 -30 -26

-2.2 -1.9

0.9

SCALE 1 inch = 0.5 data units

0.8
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—48 —4.4

T 1 rrrrr1rrrrrrrrrrrrrrrrT T T T T T T T T T T T T TrTagT

1 -37
logo(/h)

-1.5 -1.1

0.7
0.6

0.5 kzh‘

-3.3 26 -22 -19 -15

FIG. 3. The same information as displayed in Fig. 2 but shown as a contour plot. The ridge of maximum instability is rather in-
sensitive to u/h over many orders of magnitude of core size to filament height. The maximum growth rate is in the vicinity of

k,h =0.5 for p./h ~0.001.
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FIG. 4. The growth rate for a single filament and its image at
th /2 as a function of spanwise wave number k,h. u/h=0.001.

number of maximum growth rate, we show in Fig. 7 the
angle of the unstable manifold plotted against the amount
of growth e?. This is the magnitude of the increase of a
perturbation in a “unit” time interval. Clearly the max-
imum growth occurs near 45°.

It bears repeating a comment noted in the Introduction
that the value of the height h characterizing the initial lo-
cation of the vortex filament is outside the model calcula-
tion we have presented. However, if we imagine that the
filament develops primarily at the angle and spanwise
wave number associated with the maximum growth rate
of the instability and we associate wavelength of the most
unstable mode with the remains of the filament which are
left near the wall with the observed streamwise streaks
typically separated by about 100 wall units, so A, =~ 100 in
wall units [7], then we estimate that A =5 in wall units.
This is very close to the wall and as that is precisely
where one expects the production mechanism to be dom-
inant, the calculation is consistent within itself.

III. INFINITE LINEAR ARRAY
OF VORTEX FILAMENTS
Now we turn to the situation where we have many vor-
tex filaments interacting with each other but arranged so

43.4 ———

433 [

432 \

43.1 \

430 | . ]
429} N

< 428 | N

e e e )

427

426

425

23535 45 a0 35 -3.0 25 20 15
log,q(i/h)

FIG. 5. The angle (deg) of the linear unstable manifold for
the instability with maximum growth rate shown as a function
of the cutoff or core size u/h. The angle of maximum instabili-
ty is nearly 43° as . /h ranges over many orders of magnitude.

90.0
r

80.0 +
70.0 -
60.0 |

50.0 -

8(k,h)

40.0

300 + e

200 | /

rd
10.0 /
0.0 ' . . T— i
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
Kkh
FIG. 6. The angle (deg) of the linear unstable manifold as a
function of spanwise wave number k,4 in the range of linear in-

stability.

that each has its “image” in the x-z plane. We are mod-
eling the dynamics of a boundary layer with many vor-
tices above it [3]. The observations suggest that the
boundary layer flow is dominated, at least in a visual
sense, by a recurring set of vortex structures that are gen-
erated near the wall and then grow and advect down-
stream distorting into ‘“horseshoe” shapes, which rise to
substantial heights within the boundary layer. We do not
yet have a realistic model of the formation of these vor-
tices, though the general picture of highly shared flow
rolling up through a Kelvin-Helmholtz type of instability
is natural [12], so we do not address the origin of the vor-
tex filaments in this paper. We also do not address their
disappearance through viscosity or transport down-
stream, but remain with the tractable model of an infinite
string of vortex filaments each starting a distance h /2
above the x-z plane (y =0) and located an equal distance
a from each other. Despite its unrealistic aspects, we an-
ticipate that as more complicated and realistic models are
built the overall essential features will remain. In any
case this model allows us to easily assess the effect of the
interaction of nearby vortices on the simple picture
which emerged from the consideration of a single vortex
filament above. We will find that as soon as the intervor-

25 T T S

24} -
23 \
22|

21| \

20 \

19

. 18}
@471
16| \

15 \

14|

\
12 F \
11}
1

0 o — '
0.0 10.0 20.0 30.0 40.0 50.0 60.0 700 80.0 80.0
0, Angle of Unstable Manifold

FIG. 7. Growth rate for unstable modes and the angle of in-
clination (deg) associated with the mode. Clearly the modes at
angles near 45° grow substantially faster than others.
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tex separation becomes even moderately large a /h =5,
there is little effect of one vortex on another in the region
of instability. For closer vortices there is some effect, but
until @ /h <1 the effect is small. From the discussion of
Wallace [10] and from other indications from experiment
and numerical calculations [14] it would appear that
a/h =10 to 20 is suggested. This would mean that the
vortex filaments develop more or less independently in-
teracting with the wall, as represented by their image,
and with the background mean flow. The latter is not
part of the present considerations, but we shall include it
in our subsequent work.

A. General formulation

We now consider the Hamiltonian for a row of vortex
filaments each with circulation I' located at

R, (z,t)=(Ut+ma+x,,(z,t),h/2+y,(z,t),2),

29)
J

H(x,(z,t),y;(z,t)]
rrog
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namely near a height h /2 above the x-z plane. When the
fields x,(z,t) and y,(z,t) are zero, we have uniform
translation in the x direction of the whole row of vortices
filaments at velocity U which we will determine below.
The row starts with equal distance a between the fila-
ments and this is maintained in the base state around
which we will consider perturbations. Each vortex fila-
ment has an image with circulation —I located at the
sites

R, (z,t)=(Ut+ka+x.(z,t),—h/2—y(z,t),z) . (30)

The Hamiltonian divides into three parts composed of
first, the self interaction of the vortex filaments together
with interaction with filaments in the same row, second,
the interaction between the vortex filaments and their im-
ages, and finally a piece proportional to the total x direc-
tion momentum, again generating a uniform translation
U in the x direction. The net Hamiltonian for all of these
terms is

[1+x,(z,t)x (2" 2)+y,, (2,8 )yp(z',2)]

87 .

> fm dz dz’
hk=—w T

(X (z,8) =X, (2',0))2+(p,, (2,8)—pi (2,) P+ (z —2" )+ u?] 2

[1+x,,(z,t)x (2',8) =y, (2,8 )y (z',1)]

(x,(z,8)=x (2", )+ (m—k)a Y +(p,,(z,t)+y (2", 1)+ h )P+ (z—2")?]/?

-Ur 3 [dzy,(z,0).

m=—

(3D

Again p only appears in the interaction of the vortex filament with itself and in the interaction of its image with self. In
analogy to the single filament case, the appropriate Poisson brackets are given by

n

" 8(z—z') .

{x,(2),y,(2")} = =

(32)

B. Small perturbations

This Hamiltonian is expanded about the steady solution R, (z,t)=(Ut +ma,h /2,z) and for this we expand the in-
tegrand for H in x,,(z,t),y,,(z,t) up to second order. This results in the expression

H(x,(z,1),y,(z,1)]

=—Ur 3 [dzy,(z,0)

m=—o

r?, ©

Xz, )xp (2", 8)+y, (z,t)yp(2',t)

87

> f_w dz dz’

m,k=—oc

D(u)

2a(m —k)(x,,(z,t)—x,(2',))+(x,, (2,1 )=x, (2',)) 2+ (p,, (z,0) =y (2", 1))}

D(u)?
Xz, )%, (2", 8) =y, (2,t)yp(21)

1
2
3 a¥(m—k)Xx,,(z,t)—x,(z',1))?
2

D(u)’ D(h)
L1 (X, (2,8) =%, (2, 8))2 + (P, (2,8)+y, (2',1))?
2 D(h)?

4 h(y, (z,t)ty (z',t))talm —k)x,,(z,t)—x,(z',t))

3 (g ) +y(2, ) +alm —k)(x,,(2,0)—x(2',0))

D(h)?

2

5 , (33)
D(h)
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with
D(w)=[(z—z'?+(m—k)a®+w?)"?. (34)

This Hamiltonian is diagonalized when we perform two transformations on the dynamical variables x,,(z,z) and
Ym(z,t). First we introduce the Fourier transform in the variable z, as we did above. In addition, we introduce the
Fourier transform on the finite domain [0,a] to treat the discrete index m. The variable x,,(z,¢) has the expression

w dk, g
x,(z,t)= __._f as

cwam o g X x(k,, &), (35)

2imém +ik,z
a

and similarly for y,, (z,¢).
Using these coordinates, the Hamiltonian becomes diagonal:

H[x(kz,§),y(kz,§)]

2 cos(k,v)cos ZL:Q
=I_ *® aié 2 2 2 had 0
7k 755 | x G, 9P+ y he, ) K3 S av 50
1—cos(k,v)cos 2mng
had food a
- v
n=2—oo 0 A(,u.)s

1—cos(k,v)cos

2mné
a

+3a?%|x(k,,&)|? i nzfomd” Ap)®
n=—o0 H

cos(k,v)cos

2mné
a

2 2_ 2] - °°
KillxUe, =y, O] 3 [ av a0

1—cos(k,v)cos zﬂ—:é

txe, &) 3 [ dv T3

1+cos(k,v)cos ZL:g—

+y(k,OF 3 fo”"du AT

1+cos(k,v)cos

2mné
a

__3h2 (kz! )2 hd wd
by g'é_wfo Y Ah)

1—cos(k,v)cos

2mné
a

—3a%|x(k,&)* 3 nzfowd” Ah)’

+3ahi(y*(k,,E)x(k,,E)—y(k,,E)x*(k,,E))
2mn§
a

sin cos(k,v)

x,,=2_m"fo v Ah)

+ %I‘coth "—h]—U r 3> [dzyz0), (36)

n=—ow

a
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where
Alw)=(w?+v2+n2a?)? . (37)

As in the single filament case, the last term is the only
linear term; therefore we choose U =2I coth(wh /a)/a
to have a steady state. This correctly picks out the
translation velocity of a symmetric double array of line
vortices [3]. The fact that the Hamiltonian is diagonal-
ized in these coordinates clearly reflects the translational
symmetry of the unperturbed state in the z direction and
the periodicity of that state in the x direction.

The decomposition of the variables x,(z,t) and
Ym(2,t) differs slightly from that of Lamb [3], as followed
by Robinson and Saffman [4]. They chose

x,(z,0)=X(t)e M (38)
with a single value of ¢ across the row of vortex fila-
ments. If the £ integral were peaked near £=¢, this
would give a correct guess for the functional form of the
displacement x,,(z,¢). To the extent that both Lamb and
Robinson and Saffman were simply trying to establish the
instability of the rows of vortex filaments, this choice is
quite sufficient. To make the connection between the
model and any observed phenomena in a boundary layer,
we must explore the fuller space of possibilities. In fact,
we will see that when the vortices in the row are quite
close together, a /h =2 or less, this simplified choice for
the dependence on m is quite acceptable. When a /h be-
comes larger, even a /h =8 is enough and the dependence
on £ among the unstable modes is quite smooth and
without any dominant value of £ so the m dependence of

|

— r? e ad * *
H(xUe, )9 1= 27 [ * dk, [ *“5(x (k16

(k;,€))
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FIG. 8. Growth rate of a line of vortex filaments (and their
images) as a function of the spanwise wave number k,h and the
streamwise variation parameter &/h for initial separation of the
filaments of a /h =2. There is some weak dependence on §/h
visible in these calculations. u/h =0.001, here.

the vortex filaments is not e”™%. When we have near in-
dependence of £ among the unstable modes, we are being
told that the behavior is similar to that of an isolated vor-
tex filament, which is quite sensible for large values of
a /h as the interaction between filaments decreases rapid-
ly as their distance increases.

The Hamiltonian (36) can be written in the matrix
form

Alk,,E) Clk,,E)
C*(k;,€) B(k,,§)

x(k,,&)

k€ | (39)

where C(k,,&) is pure imaginary C(k,,§)=—C*(k,,§) and A(k,,£) and B(k,,§) are real. Fairly compact expressions
can be given for these coefficients by performing the v integrations which give rise again to Bessel functions of the third

kind. With the notation

a,=k,(a*n?+p)\2 “0)
B,=k,(a*n+h?)/? an
S(c,a)=;"c—coth ”TC , (42)
T.(c.a)=-"— a cosh(wc /a )sinh(wc /a )t mc 43)
= a’e sinh?(7c /a) ’
we have
A(k,,§)=S(h,a)—S(u,a)—T_(h,a)+T_(u,a)
° a2Ky(a,)+a,K (a,)—a*n’k}K,(a,)
+ (2ming) | — p——
nzz_mcos min€ pERES
B:Ko(B,)—B.K,(B,)+a*n?k2K,(B,)
- 2.2 72 ) (44)
a‘n“+h

and
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FIG. 9. A contour plot of the same information as in Fig. 8 with negative growth rates (stable modes) not displayed.
B(k,£)=S(h,a)—S(u,a)—T (h,a)
2 2 272
® . a,Kola,)ta,K(a,) B,KoB,)+B,K(B,)—h*k;K,(B,)
+ 3 cos(2ming) | ———" 5y —————— T | (45)
N — o n‘+u n‘+h
and finally R ——
K,(B,) 7m0t ]
C(k,,&)= —2iah 2 sm(2mn§)——ﬁ~+—hT . (46) e e
n=—oo 65.0 I . A (e
Using Eqgs. (32) and (35) the Poisson brackets for the di- 550
agonalizing variables are
@ 45.0
. 2ma
{x(k,,&),y*(k,,E )]———S(k —k])B(E—E). 47 350 |
These Poisson brackets and the Hamiltonian (39) lead to 20
the equations of motion 150
Ix(k,,&,t) . ‘ o _
r_ii =—Cl(k,,E)x(k;,6,t) 5‘Ook) 2.0 a0 eo 8.0 100
at Growth Rate
+B(k;,8y(k.,6,t) , 48) FIG. 10. The inclination angle (deg) of the linear unstable
dy(k,,&,t) manifold for a line of vortex filaments with a /A =2. The sets of
4nl _az— =—A(k,,E)x(k,,&,t) angles are associated with various values of k,k and £/h as seen

_C(kz,g)y(kzygyt) ’

in Fig. 8. An inclination angle of ~45° is associated with the
maximum growth rate in each case.
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which tells us that the stable when
A(k,,E)B(k,,£)>0.

We have analyzed the Hamiltonian for two choices of
the ratio of the initial filament height above the plane h
and the filament separation a. In Fig. 8 we present the
growth rate for a/h=2 for 0.05<k,h=1.0 and
0.05<£/h <1.0. Both negative (stable) and positive (un-
stable) growth rates are seen. In this computation we use
£=0.001 and cut off the sums over the Bessel functions
arising from the integrals over v in the expressions for
A(k,,&) and B(k,,£) at index 10. Ten values were used
in the £ display and 20 in the k, display. The same infor-
mation is shown as a contour plot in Fig. 9 but here we
have suppressed contours associated with negative
growth rates. It is apparent that the growth rate is
dependent, though not dramatically, on the value of £/A
so the ansatz that the only variation of x,,(z,¢) would be
as ¢’™? would not be appropriate for such an initial fila-
ment spacing. In Fig. 10 we present the inclination angle
of the linear unstable manifold for the line of vortex fila-
ments with the same range of parameters as just indicat-
ed. The various curves of growth rate versus inclination
angle are associated with varying values of k,h and £/h.
The variation with § /A is apparent here.

In Fig. 11 we move on to an initial filament spacing
a /h =8 and display the growth rate as a function of k,h
and £/h. The dependence on &£/h has essentially disap-
peared now, as one might expect for the rather isolated

system is
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streamwise variation parameter &/h for initial separation of the
filaments of a /h =8. There is little dependence on £/h visible
in these calculations. p/h =0.001, here.

vortex filaments now in the problem. Figure 12 is the
contour plot of this same information; again the negative
growth rate contours have been suppressed. The rather
substantial independence of the unstable modes on §/h is
quite clear. Finally in Fig. 13 we have the inclination an-
gle of the linear unstable manifold as a function of the
growth rate. The close bunching of the values once again
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FIG. 12. A contour plot of the same information as in Fig. 11 with negative growth rates (stable modes) not displayed. Variation

with £/h is nearly absent.
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FIG. 13. The inclination angle (deg) of the linear unstable
manifold for a line of vortex filaments with a /A =8. The sets of
angles are associated with various values of k,h and £/h as seen
in Fig. 11. An inclination angle of ~45° is associated with the
maximum growth rate in each case. The absence of variation
with £/h is quite apparent.

reflects the independence of the solution at these larger
values of a /h to £/h. The independence of variations on
&/h means an ansatz of the kind discussed above would
also not be appropriate here.

IV. CONCLUSIONS: BOUNDARY LAYER MODELS

The unified picture of concentrated spanwise vortex
filaments generated near the wall in boundary layer flows
(which then interact with each other and through an in-
stability to spanwise fluctuations, rising through the
boundary layer to be seen as hairpin vortices leaving
trailing streamwise “legs”) is hardly initiated in this pa-
per. Many have suggested and analyzed the observed
features of these flows within such a framework [9,10,12].

We have added to this discussion and quantitatively
strengthened the value of such models by two main re-
sults.

(i) We have identified the approximate location of the
height of the generation of the vortex filaments by associ-
ating the wavelength of the maximum spanwise instabili-
ty with the observed separation between streamwise
streaks. The maximum instability near k,h =0.5 leads to
h=5-10 in wall units when the spanwise wavelength
2w /k,~100 in wall units.

1217

(ii) We have identified the inclination angle of the
linear unstable manifold of the most unstable spanwise
modes, which is near 45° with the angle observed by
many and found in extensive numerical simulations.

Absent from our computations is a mechanism for the
generation of these vortex filaments. The origins of these
filaments suggested by Corcos [15] and his co-workers
seems natural. We have also not dealt with the effects of
the background flow, though following Leonard [13] its
incorporation is straightforward.

Our further explorations of this model will represent
the generation of the vortex filaments as a nearly periodic
process [12] taking place near the wall, h ~a few wall
units, and then interacting with the images induced by
the presence of the wall, with the other vortices and with
the mean flow. Within this framework we anticipate that
one can construct a rather complete picture of the gen-
eration, interaction, and evolution, and subsequent decay
and disappearance of the vortical structures which dom-
inate the boundary layer at high Reynolds number.

Part of our motivation for this exploration is the recent
observation that when sensed with an instrument large
compared to the scale of the coherent structures, one sees
quite clearly only a few degrees of freedom dominating
the boundary layer [16]. Almost certainly these are the
reflection of a few coherent structures made visible by the
averaging out of small scale fluctuations. One of our
goals in these investigations is to produce a dynamical
model based on vortex filament interaction which can be
compared with the observations using the method of non-
linear dynamical analysis developed for these low dimen-
sional problems [17].
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FIG. 1. A vortex filament of
circulation I' aligned along the z
axis at a height y=h /2 above
the x-z plane. Its image at
y=—h /2 has circulation —I".
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FIG. 3. The same information as displayed in Fig. 2 but shown as a contour plot. The ridge of maximum instability is rather in-
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k,h =0.5 for u/h =~0.001.



